The LuLac Edition #4,039, March 26, 2019
As a news junkie I followed it with interest. After the event ended, I pretty much put it on the back burner but every time I went to Harrisburg reminders of those days came alive to me.
Now this week as the 40th anniversary approaches, here is a recap of what exactly went down.
The Three Mile Island accident was the partial meltdown of reactor number 2 of Three Mile Island Nuclear Generating Station (TMI-2) in Dauphin County, Pennsylvania, near Harrisburg and subsequent radiation leak that occurred on March 28, 1979. It was the most significant accident in U.S. commercial nuclear power plant history. The incident was rated a five on the seven-point International Nuclear Event Scale: Accident with wider consequences.
The accident began with failures in the non-nuclear secondary system, followed by a stuck-open pilot-operated relief valve in the primary system, which allowed large amounts of nuclear reactor coolant to escape. The mechanical failures were compounded by the initial failure of plant operators to recognize the situation as a loss-of-coolant accident due to inadequate training and human factors, such as human-computer interaction design oversights relating to ambiguous control room indicators in the power plant's user interface. In particular, a hidden indicator light led to an operator manually overriding the automatic emergency cooling system of the reactor because the operator mistakenly believed that there was too much coolant water present in the reactor and causing the steam pressure release.
The accident crystallized anti-nuclear safety concerns among activists and the general public, and resulted in new regulations for the nuclear industry. It has been cited to have been a catalyst to the decline of a new reactor construction program, a slowdown that was already underway in the 1970s. The partial meltdown resulted in the release of radioactive gases and radioactive iodine into the environment.
Anti-nuclear movement activists expressed worries about regional health effects from the accident. However, epidemiological studies analyzing the rate of cancer in and around the area since the accident, determined there was a small statistically non-significant increase in the rate and thus no causal connection linking the accident with these cancers has been substantiated. Cleanup started in August 1979, and officially ended in December 1993, with a total cleanup cost of about $1 billion.
The Three Mile Island accident inspired Charles Perrow's Normal Accident Theory, in which an accident occurs, resulting from an unanticipated interaction of multiple failures in a complex system. TMI was an example of this type of accident because it was "unexpected, incomprehensible, uncontrollable and unavoidable."
Perrow concluded that the failure at Three Mile Island was a consequence of the system's immense complexity. Such modern high-risk systems, he realized, were prone to failures however well they were managed. It was inevitable that they would eventually suffer what he termed a 'normal accident'. Therefore, he suggested, we might do better to contemplate a radical redesign, or if that was not possible, to abandon such technology entirely.
"Normal" accidents, or system accidents, are so-called by Perrow because such accidents are inevitable in extremely complex systems. Given the characteristic of the system involved, multiple failures which interact with each other will occur, despite efforts to avoid them. Such events appear trivial to begin with before unpredictably cascading through the system creates a large event with severe consequences.
Normal Accidents contributed key concepts to a set of intellectual developments in the 1980s that revolutionized the conception of safety and risk. It made the case for examining technological failures as the product of highly interacting systems, and highlighted organizational and management factors as the main causes of failures. Technological disasters could no longer be ascribed to isolated equipment malfunction, operator error or acts of God.
In the aftermath of the accident, investigations focused on the amount of radioactivity released by the accident. In total approximately 2.5 megacuries (93 PBq) of radioactive gases, and approximately 15 curies (560 GBq) of iodine- was released into the environment. According to the American Nuclear Society, using the official radioactivity emission figures, "The average radiation dose to people living within ten miles of the plant was eight millirem (0.08 mSv), and no more than 100 millirem (1 mSv) to any single individual. Eight millirem is about equal to a chest X-ray, and 100 millirem is about a third of the average background level of radiation received by US residents in a year."
Based on these emission figures, early scientific publications, according to Mangano, on the health effects of the fallout estimated no additional cancer deaths in the 10 mi (16 km) area around TMI. Disease rates in areas further than 10 miles from the plant were never examined. Local activism in the 1980s, based on anecdotal reports of negative health effects, led to scientific studies being commissioned. A variety of epidemiology studies have concluded that the accident had no observable long term health effects.
The Radiation and Public Health Project, an organization with little credibility amongst epidemiologists,[81] cited calculations by its member Joseph Mangano – who has authored 19 medical journal articles and a book on Low Level Radiation and Immune Disease – that reported a spike in infant mortality in the downwind communities two years after the accident. Anecdotal evidence also records effects on the region's wildlife.[52] For example, according to one anti-nuclear activist, Harvey Wasserman, the fallout caused "a plague of death and disease among the area's wild animals and farm livestock", including a sharp fall in the reproductive rate of the region's horses and cows, reflected in statistics from Pennsylvania's Department of Agriculture, though the Department denies a link with TMI.
John Gofman used his own, non-peer reviewed low-level radiation health model to predict 333 excess cancer or leukemia deaths from the 1979 Three Mile Island accident. A peer-reviewed research article by Dr. Steven Wing found a significant increase in cancers from 1979–1985 among people who lived within ten miles of TMI; in 2009 Dr. Wing stated that radiation releases during the accident were probably "thousands of times greater" than the NRC's estimates. A retrospective study of Pennsylvania Cancer Registry found an increased incidence of thyroid cancer in counties south of TMI and in high-risk age groups but did not draw a causal link with these incidences and to the accident. The Talbott lab at the University of Pittsburgh reported finding only a few, small, mostly statistically non-significant, increased cancer risks within the TMI population, such as a non-significant excess leukemia among males being observed. The ongoing TMI epidemiological research has been accompanied by a discussion of problems in dose estimates due to a lack of accurate data, as well as illness classifications.
Forty years after the event, the nuclear power industry has not produced many new plants. Alternative energy sources have taken the front row. There are those who weren’t even born when TMI happened.
The takeaway I have is the leadership exhibited by Governor Dick Thornburgh and his Lt. Governor William Scranton. They were calm, measured and sorted out conflicting information to the public.
For those of us still around to remember it, it was an uncertain and concerning time.but the leadership from the top as well as good luck pulled us through.
0 Comments:
Post a Comment
<< Home